

GRID Superscalar: a programming model for the Grid

Daniele Lezzi, Oriol Jorba

Barcelona Supercomputing Center

GOESSP Community Workshop, Hamburg, October 7

2009

Motivation

Can I run my programs in parallel?

Explicit parallelism

VS.

Implicit parallelism

2

Tight of the second of the sec

Parallel Resources (multicore,SMP, cluster, grid)

Task selection +

Sequential Application

```
for (i=0; i<N; i++){
    T1 (data1, data2);
    T2 (data4, data5);
    T3 (data2, data5, data6);
    T4 (data7, data8);
    T5 (data6, data8, data9);
}
...</pre>
```

parameters direction

(input, output, inout)

Resource 1

Synchronization,

results transfer

Resource 2

Resource 3

•

Resource N

Task graph creation based on data precedence

Scheduling, data transfer,

task execution

Motivation

- Main objective: Reduce the complexity of applications development
 - Complexity of writing an application for a parallel platform comparable to writing it for a sequential platform
- Main characteristics
 - Task: unit of parallel work
 - Non intrusive programming model
 - Data dependence detection
 - Data renaming
 - Exploitation of distant parallelism

Design

```
for(i=0; i < MSIZE; i++)
  for(j=0; j < MSIZE; j++)
  for(k=0; k < MSIZE; k++)
    matmul(A(i,k), B(k,j), C(i,j))

for (i = 0; i < A->rows; i++) {
    for (j = 0; j < B->cols; j++) {
        for (k = 0; k < A->cols; k++) {
            C->data[i][j] += A->data[i][k] * B->data[k][j];
            putBlocks(f1, f2, f3, A, B, C);
    }

Local scenario
```


Design

Programming examples: Block matrix multiplication

Block matrix multiplication

Base Supercompating
Supercompating
Contains
Corte Parchasion Supercompanies

GSMaster.Off(0);

Block matrix multiplication

```
void matmul(char *f1, char *f2, char *f3){
        block *A:
        block *B:
        block *C:
        A = get block(f1, BSIZE, BSIZE);
        B = get block(f2, BSIZE, BSIZE);
        C = get block(f3, BSIZE, BSIZE);
        block mul(A, B, C);
        put block(C, f3); //A and B are sou
        delete block(A);
        delete block(B);
        delete block(C);
static block *block mul(block *A, block *B,
/* Pre: The three parameters must exist */
int i, j, k;
for (i = 0; i < A -> rows; i++)
for (j = 0; j < B -> cols; j++)
 for (k = 0; k < A -> cols; k++)
  C->data[i][j] += A->data[i][k] * B->data[k][i],
return C:
```

Worker Code

Successful stories Mapping of molecular potential energy hypersurfaces

- Total execution time: 17 hours
- Number of executed tasks: 1120
- Each task between 45 and 65 minutes

Successful stories: Mapping of molecular potential energy hypersurfaces

- Molecular structure generation: this step involves the generation of the set of molecular structures defining the potential energy hypersurface. The result is a large number of input data files.
- Electronic structure calculation: one evaluation with the electronic structure package is executed for each of the data files generated in step 1. Since the output of each of these evaluations is a large output file, a filtering process that obtains the required information (molecular coordinates and total energy) is applied.
- 3. Data integration: the data generated by each of the calculations in step 2 is integrated in a single ASCII file.

GRIDSs + MPI + OpenMP: Reverse Time Migration (RTM)

Only RTM produces proper subsalt imaging Computationally more intensive

- 1 GRID superscalar application per image
 - 350,000 500,000 tasks per image
- Domain Decomposition (MPI) to process one shot between several blades
- Threads
 - OpenMP to execute one MPI process per JS21blade
- SIMD capabilities
 - VMX code

The runtime: Replica management

- GridSuperscalar can have its own replica management
 - Applications see the directory tree of their matter, but files may be in any node.
 - Hopefully replicated
- Potential benefits:
 - Keep results obtained by one computation to be used by a different one
 - Results are kept in the node that computed them, but are accessible from any node
 - Results reused by many jobs can be stored in all nodes that used them
 - Increases the probability of running a job without having to move the data
 - All is transparent to the applications (as long as the same names are used)

JRA4, task 3: operational services

- Definition of an initial testbed
- Multimodel ensemble mean of CMIP5 data held at BADC and WDCC, using CDO regridding; evaluation of netcdf4 compression
- Integration in GRIDSs of the dynamic status of the network and monitoring services (vERC service monitoring, NA2)
- Fortran bindings, replica management and intermediate files handling
- Management of the results between different executions

JRA4, task 3: operational services. OPEN ISSUES

- Relation to ESG
- Data acces (wget, OPeNDAP, GridFTP..)

NA2 Task4: "Prototype ESM Grid environment"

- Use of the same testbed of JRA4
- Pipelining of the execution of the Echam5 standalone model and of the post-processing of the results (CMCC)

GRIB binary format (WMO)

Indicator Section
Product Definition Section
Grid Description Section
Bit Map Section
Binary Data Section
End Section

Post-processing

netCDF (network Common Data Format)

binary format: • Self-Describing.

Portable.

Direct-Access.

Climate Model Output Rewriter

PCMDI (Program for Climate Model Diagnosis and Intercomparison)
netCDF-CF Climate and Forecast Metadata Convenction

http://www.bsc.es/grid/grid_superscalardaniele.lezzi@bsc.es

